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ABSTRACT
Let I be a o-ideal on a Polish space such that each set from I is contained
in a Borel set from I. We say that I fails to fulfil the 2} countable chain
condition if there is a Ei equivalence relation with uncountably many
equivalence classes none of which is in I. Assuming definable determinacy,
we show that if the family of Borel sets from I is definable in the codes
of Borel sets, then each Ei set is equal to a Borel set modulo a set from
I iff T fulfils the 3] countable chain condition. Further we characterize
the o-ideals I generated by closed sets that satisfy the countable chain
condition or, equivalently in this case, the approximation property for E}
sets mentioned above. It turns out that they are exactly of the form
MGR(F) = {A:VF € FANF is meager in F} for a countable family F
of closed sets. In particular, we verify partially a conjecture of Kunen by
showing that the o-ideal of meager sets is the unique o-ideal on R, or any
Polish group, generated by closed sets which is invariant under translations

and satisfies the countable chain condition.

1. Introduction

The main objects of our study will be o-ideals of subsets of Polish spaces. By
a o-ideal on X we mean a family of subsets of X which is closed under taking
subsets and countable unions. All o-ideals considered in this paper are assumed
to be proper, i.e., they do not contain X, and uniform, i.e., they contain
all singletons {z},z € X. Here are some other relevant definitions. A o-ideal

* Research partially supported by NSF grant DMS-9317509.
Received July 20, 1993 and in revised form March 6, 1994

343



344 A. S. KECHRIS AND S. SOLECKI Isr. J. Math.

I is said to be Borel supported (X9 supported, resp.) if for any A € |
there is B € Al NI (B € 3N, resp.) with A C B. Note that a o-ideal
is X9 supported iff it is generated by a family of closed sets. A o-ideal I has
the approximation property if for any A € X1 there is B € Al such that
AAB = (ANB)U{B A) € I. Note that, in case I is Borel supported, this
is equivalent to saying that if A € X1, then there are B;, B, € Al such that
B; C AC By and By By € 1. We say that a o-ideal I fulfils the countable
chain condition (the c.c.c.) if any family A of disjoint Borel sets such that
AN T =0 is countable. It is well-known that if a Borel supported o-ideal fulfils
the c.c.c., then it has the approximation property (see e.g. the proof of Lemma 5
below). In particular cases, like, e.g., I = the family of meager sets or the family
of measure zero sets for some o-finite Borel measure, this says that analytic sets
have the Baire property and are measurable. It also follows from the above fact
that, in case I is Borel supported, the members of A in the definition of the c.c.c.
can be assumed to be merely 1 without changing the meaning of this definition.

Let A be a family of disjoint sets. One can naturally associate with such a

family the equivalence relation E 4:
(1) tEqye (VAe Az e A ye A).

Thus a Borel supported o-ideal I does not fulfil the c.c.c. iff there is an equiva-
lence relation E with |X/E| > w whose equivalence classes, except for possibly
one, are X] and do not belong to I. We propose the following definable version
of the c.c.c. We say that a Borel supported o-ideal I fulfils the £} c.c.c. if there
is no X} equivalence relation E with |z/E| > w whose all, but possibly coﬁntably
many, equivalence classes are not in I. (We get an equivalent version of this def-
inition if we assume that none of the equivalence classes of F is in I.) The main
result of the first part of the present paper is that the 3] c.c.c. is equivalent with
the approximation property (assuming some determinacy and definability of the
o-ideal). This gives an answer to a question of Mauldin [M1]. We also define
the pseudo-Borel c.c.c. and prove a version of the above result (the pseudo-Borel
c.c.c. replacing the 1 c.c.c.) without assuming any determinacy hypotheses. As
a lemma we prove (see Lemma 4) the following result which seems interesting in
its own right: Assume A}-determinacy. If E is a X} equivalence relation, then
E has countably many equivalence classes iff every E-invariant 31 set is Borel.
(After this paper was written, G. Hjorth showed that Al-determinacy can be
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replaced in the above statement by the assumption that 2# exists for all z € w*,
which is equivalent, by results of Harrington and Martin, to X}-determinacy.)

In the second part we examine which £J supported o-ideals fulfil the =}
c.c.c. It turns out that the X1 c.c.c. is equivalent in this case with the c.c.c.
Actually we show that 9 supported o-ideals fulfilling the c.c.c. are of the form
I ={A:VF € F ANF is meager in F'} for some countable well-ordered by reverse
inclusion family F of closed sets. On the other hand, if the c.c.c. is violated
by a X9 supported o-ideal I, then there exists a homeomorphic embedding ¢:
2¥ x w¥ — X such that ¢[{a} x w¥] ¢ I for any a € 2¥. This sharpens and
generalizes some earlier results of Mauldin [M] and Balcerzak, Baumgartner and
Hejduk [BBH]. We use this fact to show that if I is a £9 supported o-ideal of
subsets of a Polish group which is translation invariant and fulfils the c.c.c., then
it is the o-ideal of meager sets. This gives a partial answer to a question of Kunen
[KU].

2. Approximating ¥} sets and the X} c.c.c.

It is a well-known fact that if a Borel supported o-ideal fulfills the c.c.c., then it
has the approximation property (see Lemma 5 below). That the reverse implica-
tion also holds in certain particular cases was proved in [KLW]. A combination
of Theorem 7(ii), Proposition 6(ii) of Section 3 in [KLW] yields the following
result: Let I be a Borel supported g-ideal such that 7 N A} is IT} in the codes
of Borel sets and such that for any A € Al \T there exists a closed set C ¢ I
with C C A. Then I has the approximation property iff I fulfills the c.c.c.
Also Mauldin [M1] proved, using results from [M], that the o-ideal of subsets of
[0, 1] which can be covered by a £ set of Lebesgue measure zero (the o-ideal very
strongly violates the c.c.c. as was shown in [M]) does not have the approxima-
tion property. Here, using quite different methods and assuming an appropriate
amount of determinacy, we are able to prove that the approximation property is
actually equivalent to the X} c.c.c., for all reasonably definable Borel supported
o-ideals regardless of their other structural properties. This gives an answer to a
question of Mauldin [M1], who asked what properties of a o-ideal are responsible
for it having the approximation property.

If E is an equivalence relation on X and A C X is E-invariant, we write
|A/E| for the cardinality of the family of equivalence classes included in A. If
B C X, then [B]g denotes the saturation of B with respect to E, i.e., [B]g =
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{x € X : Jy € BzEy}. We write [z]g for [{z}]g. If there is no possibility
of confusion we will drop the subscript £. If ¢ and 7 are two sequences of
elements of a set Y then ¢ * 7 denotes their concatenation. If y € Y, then
o xy = 0 x(0,y). For a definition of IT}-rank see [K1, 34B]. Now we define the
set WO C 2¥. Let (, ) :w? — w be a bijection. Put a € WO iff the relation
{(n,m) € w? : a((n,m)) = 1} well orders w. WO is IT}. Define |a| = the order
type of {(n,m) € w?: a((n,m)) = 1} for « € WO. Then a — |a| is a IT}-rank
on WO. For a pointclass I', Det(I") means that all games in T’ are determined.
By o(I13) we denote the o-algebra generated by the family of all II} sets.

THEOREM 1: Assume Det(Al). Let I be a Borel supported o-ideal such that the
family IN A} is 0(I11) in the codes of Borel sets. Then I has the approximation
property iff I fulfils the £} c.c.c.

The proof of the theorem is split up into several lemmas. The implication =
follows from Lemmas 3 and 4 and the implication < follows from Lemmas 5 and
6. Note that the assumption that I N A} is ¢(I11) in the codes is used only in
the proof of «.

The following consequence of Theorem 4 from [KW] will be useful.

LEMMA 1: (Kechris-Woodin) Det(A2) implies Det(a(I13)).

We will be also using the following particular case of a theorem due to Solovay.
For a proof see [K, Theorem 7.1].

LEMMA 2: (Solovay) Assume Det(AL). Let A be a IT} set and p a I1}-rank on
A. Let B C A be o(I1}) and such that if p(z) = p(y) and z € B,y € A then
y € B. Then B € TI}.

LEMMA 3: Let E be a £1 equivalence relation whose all but countably many
classes are not in I. Let A be an E-invariant set. If A ¢ A}, then there is no
B € A} such that AAB € I.

Proof: Assume otherwise. Since I is Borel supported, we can suppose that there
are Borel sets C and D such that CNA=0,D C A and X N\(CU D) € I. Now,
[C] and [D] are X1 and also [C]N A = @ and [D] C A, as A is E-invariant.
Let {On: n € w} be the family of all equivalence classes of E which are in
I. Each O, is 1. If [C]U [D]U,¢, On = X, then, since A is E-invariant,
A=[DJUUp,ca0nand X ~A=[ClUUp, ~a=p On. Now, the Suslin theorem
implies that A is Borel which contradicts the assumptions. Thus there exists
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r € XN[C]U[DJUU,e,On). Then [z] ¢ I and [z] C XN(CUD) € I, a
contradiction. |

LEMMA 4: Assume Det(A}). Let E be a X} equivalence relation. If E has
uncountably many equivalence classes, then there exists an E-invariant set A €
31\ Al. (Thus E has countably many equivalence classes iff every E-invariant
X1 set is Borel.)

Proof: Assume that such an A does not exist. Then [A] € A} for any 4 € T1.
We claim that either there exists a Borel uncountable set C C X such that
zEy iff z = y for z,y € C, or there exists an E-invariant set B € Al such
that |B/E| > w and if B’ C B is A] and E-invariant then |B'/E| < w or
(B~ B')/E| < w. (The proof below is related to arguments of Becker [B}, Sami
and Stern on minimal counterexamples to the Vaught conjecture.) To prove
this assume that for any E-invariant B € A} there exist E-invariant Al sets
By, By C B such that By N Bz = 0 and |B1/E| > w, |B2/E| > w. We construct
a countable Boolean algebra A of Borel sets such that:

(1) A contains a countable topological basis of X;

(i) if B € A and |[B]/E| > w then there exist By, By € A such that By, Bs C B,
[B1] 0 [Bg] =0, and |[B1]/E| > w, |[B2]/E| > w;

(iii) the topology generated by A is Polish.

A is built recursively starting from a countable topological basis of X. We easily
take care of (ii) using the assumption on E. To get (iii), we apply two well-known
facts: a topology on a standard Borel space can be extended by Borel sets to
obtain a Polish topology (see [K1, Theorem 13.1]), and an increasing union of
Polish topologies is Polish (see [K1, Lemma 13.3]).

Now we fix a complete metric d on X which is compatible with the topology
generated by A, and do a Cantor-type construction producing open (in this
topology) sets Q,,0 € 2<¥| so that:

(a) Qu=X;

(b) d-diam(Q,) < 1/(lho + 1);

(¢) [Q:)/El> w;

(d) d-closure(Qy4i) C Qo for i € 2 and o € 2<¥;

(e)' if 0,7 € 2<¥ are incompatible, then {Q,] N [Q,] = 0.

When Q,, for some o € 2<¥, has been constructed, we find by (ii) open (in the
topology generated by A) sets Up, Uy C Q, such that |[U;]/E| > w,i=1,2, and
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[Uo) N {[U4] = 0. Now for i = 1,2 find V;},n € w, such that V;! is open in the
topology generated by A, d-closure(V})) C Q,,d-diam(V}}) < 1/(lho + 2) and
Unew Vi = Us. Then |[V]/E| > w for some n; € w. Put Qpu; = Vi, fori=1,2.

Now C = (,co, Uiho=n Qo is an uncountable Borel (in the original topology)
set whose distinct elements lie in distinct equivalence classes of E.

If there exists an uncountable Borel set C as above, we can find a ¥1 non-Borel
set A C C. Then [A]NC = A, whence [A] ¢ A}, a contradiction.

Thus we can assume, by passing to a Borel invariant subset of X, that | X/E| >
w and for each X1 set A C X, |[A]/E] < wor |(X N[A])/E| < w. Using Det(I1}),
by Burgess’ theorem [Bu], there exists a Al function f : X — WO such that
zEy & |f(z)| = |f(y)|- Put B={x € WO : 3y € X |f(y)| = |z|}. Then B € X}
and fulfils the assumptions of Lemma 2 (with A = WO and p(z) = |z|). Thus
B € II]. Now define

B'={ze€eB:3:€ B(|z| <|z|AVy(ye BAly| < |z| = |y| < |z]))}.

It follows that B’ € £1. Put A = f~1(B’). Then 4 € ¥} and is E-invariant.
Also A as well as its complement contain uncountably many equivalence classes of
E. Thus A € 1 ~TI1. By Det(A}) and Lemma 1, each ¥ set is Borel reducible
to A. Pick D C 2¥ with D € 1\ A]. Let ¢: 2 — X be Borel and such that
z € D & ¢(z) € A. Since A is E-invariant, z € D & ¢(z) € [¢[D]] € A}. Thus
D is Al, a contradiction. n

LEMMA 5: If I does not have the approximation property, then there exists a
I} set A with a II}-rank p such that the set T C w; defined by a € T iff
{z: p(z) = a} ¢ I is uncountable.

Proof: Let P be a X} set such that there is no B € A} with PAB € I. Then
the same is true about the II} set @ = X \ P. Let ¢ be a Borel mapping from X
to the space of all trees on w such that ¢(z) is well founded iff z € Q. For a tree
Tonwandu €w<,put T, = {v € w<¥:uxv € T}. If T is well founded, let |T|
denote the rank of T'. Suppose Vu € w<*3I¢ < wy¥( > £{x : ¢(z),, is well founded
and |¢(z)u] = ¢} € I. Then for each u € w<* there exists a smallest ¢ = £, < w;
as above. Put € = sup{&y : 4 € w<*} + 1. Now define B = {z € X : ¢(z) is well
founded and |¢(z)| < €} and B’ = {z € X : Ju € w<“¢(x), is well founded and
|¢(z)u| = €}. Then it is easy to check that B C Q C BU B, B,B' € Al and
B’ € I which contradicts our assumption on Q. Thus there exists & € w<* such
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that V€ < wy 3¢ > &{z € X : ¢(x)5 is well founded and |¢(z)z] = ¢} ¢ 1. Put
A={z € X : §(x)g is well founded} and p(z) = |#(x)a|. It is easy to verify that
these A and p work. 1

LEMMA 6: Assume Det(A}). Let I 0 Al be o(II}) in the codes. If I does not
have the approximation property, then there is a £} equivalence relation E such
that | X/E| = w1 and all equivalence classes of E, except for perhaps one, are not
in 1.

Proof: Take A and p as in Lemma 5. Define A’ = {z € A: {y € A: p(y) =
p(x)} ¢ I}. Since I N A} is o(IT}) in the codes, A’ is o(II}). Clearly A’ fulfils
the assumption of Lemma 2 whence A’ € II}. Then the following equivalence

relation is ¥}:
tEye ((re A vye A)=> (xe A nye A Ap(x) = p(y))).

Also E has w; equivalence classes and all of them except for perhaps X ~ A’ are
not in J. [ |

Assuming more determinacy and using the full strength of Solovay’s lemma
(see [K, Theorem 7.1]) we obtain the same conclusion (with the same proof) as
in Theorem 1 for wider classes of Borel supported o-ideals or even for all of them
if we assume AD. (Note however that, as follows from Lemmas 2 and 3, it is
enough to have only Det(Al) to prove that the approximation property implies
the X1 c.c.c. for all Borel supported o-ideals.) For example we have the following
result.

THEOREM 1’: Assume PD (AD, resp.). Let I be a Borel supported o-ideal such
that I N A} is projective in the codes (I N A} is arbitrary, resp.). Then the £}
c.c.c. and the approximation property are equivalent.

We want to make here a few comments on what can be proved without any
determinacy hypotheses. We will summarize them in Theroem 1”. A family A4
of disjoint sets is called pseudo-Borel if the relation E 4 associated with A as
in (1) in the Introduction is 3} and there is a II} equivalence relation F' such
that

(2) xEUA#(Vysz@xEAy).

Note that if E 4 is Borel we can take F' = E 4. A Borel supported o-ideal I fulfils
the pseudo-Borel c.c.c. if every psendo-Borel family A of disjoint sets such
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that AN I = @ is countable. Clearly the c.c.c. implies the ¥} c.c.c., which in
turn implies the pseudo-Borel c.c.c.

LEMMA T7: Assume a Borel supported o-ideal has the approximation property.
Then I fulfils the pseudo-Borel c.c.c.

Proof: Suppose I does not fulfil the pseudo-Borel c.c.c. Let A be a pseudo-
Borel family of sets witnessing it and let F be a II] equivalence relation from the
definition of pseudo-Borelness. By Lemma 3 applied to E4 it is enough to find
an E 4-invariant set A such that A € £} N A}l. Since E4 € ], XN A€ =1.
If XN|JA ¢ Al we are done. Thus we can assume that |JA € A]. But
by (2) JA is F-invariant and F||JA = E4||JA. Thus since F € II and
|JA/F| = |A| > w, by Silver’s theorem [S], there is a perfect compact set
C C |J A such that different elements of C belong to different equivalence classes
of E4. Pick A C C in £} N A}. Then [4)g, is E4-invariant and £} and, as
g NC= A4z, ¢ AL W

LEMMA 8: Assume I is a Borel supported o-ideal such that I N Al is 7 in the
codes of Borel sets. If I fulfils the pseudo-Borel c.c.c., then I has the approxima-
tion property.

Proof: 1t is enough to prove an analogue of Lemma 6 without the determinacy
hypothesis. But since we assume that I N Al is £} in the codes, the set A’
defined in the proof of Lemma 6 is TI1. Put A= {{z € A" : p(z) = a} : @ < w1}.
Then E 4 is equal to the relation E defined in the proof of Lemma 6 and thus
|X/E4| > w and E4 € £]. For the II} equivalence relation F' we take

cFye (x=yVv(ze A Aye A Ap(x)=p(y)).
"

Combining Lemmas 7 and 8 we obtain the following theorem.

THEOREM1”: Let I be a Borel supported o-ideal such that I N A} is £} in
the codes of Borel sets. Then I has the approximation property iff I fulfils the
pseudo-Borel c.c.c.
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3. X2 supported o-ideals

The X9 supported o-ideals occur frequently in harmonic analysis and descriptive
set theory as o-ideals generated by families of closed sets. In this section we
characterize those 9 supported o-ideals which have the approximation property
and also give an abstract characterization of the o-ideal of meager sets. No
determinacy assumptions will be used in the sequel.

Let F be a family of subsets of a Polish space X. Put

MGR(F)={BC X :VA€ FBNA is meager in A}.

If AC X, we will write MGR(A) for MGR({A}). If I is a o-ideal and A C
X, we write [|/A = {B C A: B € I}. A family F of subsets of X is said
to be well-ordered by reverse inclusion if there is an ordinal a such that
F={A¢:{<a}and § (< a & A D A¢. By mx and my we denote the
projections from X x Y onto X and Y, respectively. Also for A C X x Y we
write A, = {y € Y : (z,y) € A}.

LEMMA 9: Let Y be Polish and let J be a £ supported o-ideal. Assume that
for any open set U # () there exists a nowhere dense set I C U such that
F ¢ J. Then there is a homeomorphic embedding ¢ : 2 x w* — Y such that
ol{a} x w*] & J for any a € 2¥.

Proof: For any family A of subsets of Y define A¢ to be the set of all points
x € Y such that for any open U with x € U the set {A € A: ANU # 0}
is infinite. In the natural way we identify a sequence ¢ € (2 X w)™ with the
sequence ((0)o, (o)1) € 2" x w™. For a € w* by a|n we denote the restriction
ofaton = {0,...,n—1}. We also write N, = {y € 2 x w* : m(7)|n =
()0, T (Y)|n = (o)1} for o € (2 X W)™, n € w.

Now we construct recursively open sets U,,o € (2 X w)<¥, so that:
(i) o C 7,0 # 7 implies closure(U,) C Uy;
(ii) if neither o C 7 nor 7 C o then U, N U, = 0;
(iii) diam(U,) < 1/2"+@1("=1) where n = lha;
(iv) {Uss(iny:n€w}t ¢ Jforie?2;
(v) Us #0.
If U, has been defined, find a nowhere dense closed set F C U, with F ¢ J.
Then find two closed sets Fo, F; C F, Fy, F1 ¢ J such that there exist two open
sets Vp, Vi C U, containing Fg and F}, respectively, and having disjoint closures.
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Since F; is nowhere dense in V;,i = 0,1, we can find nonempty pairwise disjoint
open sets Wi,n € w, so that F; = {W} : n € w}¢, W} C V; and diam(W}) <
1/2%+14" where k = lho. To define W}, first choose D' = {d’, : n € w} to
be discrete subsets of V; such that F; = closure(D?) \ D*. Then let W be an
appropriately small ball around df,. Put Us.(; n) = W.

Now define ¢ : 2¥ x w” — Y by ¢(a, §) = the only point in (., Ulajn,8in)-
It is clear from (i)-(iii) and (v) that ¢ is a homeomorphic embedding. Note also
that, by (iii) and (iv), {$[Nos(in)] : 0 € w}? = {Usu(in) : n € w}? ¢ J for any
o€ (2xw)<¥andie€?2.

Suppose that there is @ € 2 such that ¢[{a} x w*] € J. Then there exist
F, € JNII?,n € w, such that ¢[{a} x w*] C Y
Theorem there is 7 € w*, for some k € w, and ng € w such that B[ N(ajk,r)] C Frq-
But then {@[No|(k41),rx(n)] : 1 € w}? C F,, € J, a contradiction. 1

F,. By the Baire Category

ne€w

The following theorem generalizes and strengthens some results proved in [M]
and (BBH]. It was shown in [BBH, Theorem 2.3] that (ii) holds for the o-ideal
of all subsets of 2* which can be covered by 9 sets of Lebesgue measure zero.
A bit weaker result for the same g-ideal was proved earlier in (M, Theorem 1]
and this weaker result was generalized in [BBH, Theorem 1.5] to a slightly wider
class of 39 supported o-ideals.

THEOREM 2: Let I be a 9 supported o-ideal. Then precisely one of the follow-
ing possibilities holds:

(i) I = MGR(F) for a countable family F of closed subsets of X, which can be
assumed to be well-ordered by reverse inclusion;

(i) there is a homeomorphic embedding ¢ : 2 x w* — X such that ¢[{a} xw*] ¢
I for any a € 2“.

Proof: For F C X closed put F/ = FN|J{U : U is open, UNF # § and
IHUNF)y=MGR{UNF)}and F* = FN{J{U : U isopen and UN F € I}.
Now define by transfinite recursion:

Fo=X%
Fy = (N, <y F5)* if X is limit;
F'y+1 = F,,y

Claim: Let U C X be open. Assume F, ;U = F,NU. Then FNU = F,NU
for any £ > 7.
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Proof of the Claim: First we prove that if W N F, € I for an open set W,
then W N F, = 0. This is clear if + is limit or 0. Assume v is a successor. Let
A be the biggest limit ordinal < v or A = 0. Then W N F, must be meager in
Fy. So there exists a biggest § < v with W N F, meager in Fy. It follows that
there exists an open set V such that @ # V N Fy,y C W N F,. We thus have
VN Fgy1 € MGR(Fp) and V N Fpyq € I, whence V N Fyy1 = §, a contradiction.

Now, if UNF, C F,41, we show by induction on £ > v that UNF, C Fg.
For £ limit it is a consequence of the observation from the previous paragraph.
For successors it follows directly from the inductive hypothesis and the inclusion
UNF, C F,4,. This finishes the proof of the Claim.

There exists a smallest o < wy such that F, = F, ;.

Casel: F,=0.

Put ¥ = {F, : v < a}. First notice that F,.; is nowhere dense in F, for
v < a. Otherwise there is an open set U such that F,4; D F, NU # @. Then
by the Claim F¢ O F, nU for all £ > ~. In particular, F, D F, N U # @ which
contradicts our assumption on F,.

Now we show that I = MGR(F). Let A € I. Then AN (F,\F,41) €
MGR(Fy~\Fyy1) for v < a. But since F,y; € MGR(F,), we have A €
MGR(F,). For the opposite direction assume that AN F, € MGR(F,). Since
F,yy is closed, AN (Fy N Fy,) € MGR(Fy~ Fy41). Thus AN (FyNF, 1) €1
for ¥ < a. Also clearly X ™ Fo € I and (., Fyy ™ F) € I for A limit. Since I is
a o-ideal,

A=AnX~F)u | An(E~NR)U U AN(FNFu)el
ALa,\ limit Y<A <o

CASE 2: F, #0.

By the Claim F, = F; for all { > a. Thus F, = F, and FX = F,. This easily
implies that the assumptions of Lemma 9 are fulfilled for Y = F,, and J = I|F,.
Thus we obtain (ii). ]

Note that (i) implies that I fulfils the c.c.c. Thus it follows from Theorem
2 that if a X9 supported o-ideal does not fulfil the c.c.c., then there exists a
“perfect” family of G4’s outside of I, i.e., (ii) holds. A similar fact was proved
for a different class of o-ideals in [KLW)]. Namely by Theorem 2 of Section 3 in
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[KLW], if I is a Borel supported o-ideal such that I N A} is TI in the codes
and for any A € A} N1 there is a closed set C ¢ I with C C A, then if I does
not fulfil the c.c.c., then there is a “perfect” family of closed sets not in I. In
particular, in this case, as well as in the case of £9 supported o-ideals, the c.c.c.,
the =] c.c.c., and the pseudo-Borel c.c.c. are equivalent.

The next theorem lists a few characterizations of the o-ideals of the form
MGR(F) for a countable, well-ordered by reverse inclusion family F of closed
sets.

THEOREM 3: Let I be a £9 supported o-ideal. Then the following are equivalent.
(i) I is of the form MGR(F) for a countable family F of closed subsets of X
well-ordered by reverse inclusion;

(ii) I fulfils the c.c.c.;

(iii) I fulfils the pseudo-Borel c.c.c.;

(iv) In A} is A} in the codes of Borel sets;

(v) IN A} is 1 in the codes of Borel sets;

(vi) I has the approximation property.

Proof: (i) = (ii). Let A be an uncountable family of disjoint X} sets with
ANI = @. Then, since F is countable, there is F € F and an uncountable
family A" C A such that AN F is not meager in F for any A € A’. This yields a
contradiction, since MGR(F) fulfils the c.c.c.

(i) = (iii) is obvious.

(iii) = (i). Suppose (i) does not hold. Let ¢ be as in Theorem 2(ii). Put
A= {¢[{a} x w*]: a € 2°}. Then E4 is Borel. Indeed, notice that since ¢ is a
homeomorphic embedding ¢[2* x w*] is II. Put B = ¢[2* x w*]. Then

tE y & (¢ BAy ¢ B)V (Ja € 292,y € ¢[{a} x w*]))
& ((z¢ BAy¢ B)V (T € 2¥z,y € ¢[{a} x w])).

Since E 4 is Borel, A is a pseudo-Borel family.

(i) = (iv). By a standard calculation, see e.g. [K, 16.1].

(iv) = (v) is obvious.

(v) = (i). Suppose that I is not of the required form. Let ¢ be as in Theorem
2(ii). Let B C w“ x 2¢ be such that B € A}l and m,.[B] ¢ Ii. Define
B' Cw” x X by (a,z) € B' ¢ z € ¢[2¥ X w’] A (@, 13+ (¢7*(2))) € B. Clearly
B' € A}]. It is easy to check that B!, ¢ I or B), = @ for any a € w* and



Vol. 89, 1995 APPROXIMATION OF ANALYTIC BY BOREL SETS 355

{a€ew’:B,¢I}={a€w’: By #0} =m,[B]¢ I]. Thus {a €2¥: B, €
I} ¢ 31 which gives a contradiction since if I N A} is 1 in the codes, then
{a€2¥: A, €I} is X} for any Borel set A C 2¥ x X.

(vi) = (iii) is simply Lemma 7.

((iii) A (v)) = (vi) is Lemma 8. |

Consider now 2“ as a group with the coordinatewise addition modulo 2. Kunen
[Ku, 1.27] asked if all Borel supported o-ideals on 2¢ which are translation in-
variant and fulfil the c.c.c. are: the family of meager sets, the family of Lebesgue
measure zero sets or the intersection of the two. The following corollary provides

a partial answer to this question.

COROLLARY: Let X be a Polish space and let H be a group of homeomorphisms
of X such that |J,cp h[U] = X for any open nonempty set U C X. Let I be a
9 supported o-ideal on X. If I fulfils the c.c.c. and is such that h[A] € I if
A € I, then I is the o-ideal of meager sets. In particular, if G is a Polish group
and I is a £9 supported translation invariant o-ideal on G which fulfils the c.c.c.,

then [ is the o-ideal of meager sets.

Proof: First notice that, by invariance under homeomorphisms from H, I cannot
contain a nonempty open set. By Theorem 3 there is a well-ordered by reverse
inclusion countable family F of closed subsets of X such that I = MGR(F).
Let Fy € F be such that F' C Fp for any F' € F. Then X \ Fy is open and
XNFy€l Thus XNFy=0,ie, Fop = X. If F# {Fp}, let F; € F be such
that F' C F, for any F' € F~{Fp}. If F = {Fp}, put F; = 0. It follows that
MGR(X ~ Fy) C I. Since X \ F; is nonempty and open, we get MGR(X) C I
by invariance of MGR(X) and I under homeomorphisms from H. If there is
aset A € INMGR(X), then, since I is £9 supported, we can find 4 € X3,
A € INMGR(X). Now the Baire Category Theorem implies that there is an

open set in I which is impossible. |
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