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ABSTRACT 

Let I be a c-ideal on a Polish space such that each set from I is contained 

in a Borel set from I. We say that I fails to fulfil the ~11 countable chain 

condition if there is a ~ equivalence relation with uncountably many 

equivalence classes none of which is in I. Assuming definable determinacy, 

we show that if the family of Borel sets from I is definable in the codes 

of Borel sets, then each ~ set is equal to a Borel set modulo a set from 

I iff I fulfils the ~ countable chain condition. Further we characterize 

the a-ideals I generated by closed sets that satisfy the countable chain 

condition or, equivalently in this case, the approximation property for ~11 

sets mentioned above. It turns out that they are exactly of the form 

MGR(.T) = {A : VF E 3ZA A F is meager  in F}  for a countable  family 5 u 

of  closed sets.  In par t icular ,  we verify part ial ly a conjecture  of  K u n e n  by 

showing t h a t  the  a-ideal  of meager  sets  is the  unique  a- ideal  on R ,  or any  

Polish group,  genera ted  by closed sets  which is invariant  under  t rans la t ions  

and  satisfies the  countable  chain  condit ion.  

1. I n t r o d u c t i o n  

The main objects of our study will be a-ideals of subsets of Polish spaces. By 

a a - idea l  on X we mean a family of subsets of X which is closed under taking 

subsets and countable unions. All a-ideals considered in this paper are assumed 

to be p r o p e r ,  i.e., they do not contain X, and un i fo rm,  i.e., they contain 

all singletons {x},x E X. Here are some other relevant definitions. A a-ideal 
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I is said to be Bore l  s u p p o r t e d  (lEo s u p p o r t e d ,  resp.) if for any A E I 

there is B E ~ M I  (B E ]goMi ,  resp.) with A C B. Note that a a-ideal 

is ]go supported iff it is generated by a family of closed sets. A a-ideal I has 

the a p p r o x i m a t i o n  p r o p e r t y  if for any A E ]g~ there is B E ~ such that  

A A B  = (A \ B)  tO (B  ". A) E I. Note that,  in case I is Borel supported, this 

is equivalent to saying that if A E ]gl 1, then there are B1, B2 C ~ such that 

B1 C A C B2 and B2 \ B1 C I. We say that a a-ideal I fulfils the c o u n t a b l e  

cha in  c o n d i t i o n  (the c.c.c.)  if any family .4 of disjoint Borel sets such that 

.4 M I = ~ is countable. It is well-known that if a Borel supported a-ideal fulfils 

the c.c.c., then it has the approximation property (see e.g. the proof of Lemma 5 

below). In particular cases, like, e.g., I = the family of meager sets or the family 

of measure zero sets for some a-finite Borel measure, this says that analytic sets 

have the Baire property and are measurable. It also follows from the above fact 

that,  in case I is Borel supported, the members of A in the definition of the c.c.c. 

can be assumed to be merely ]g~ without changing the meaning of this definition. 

Let A be a family of disjoint sets. One can naturally associate with such a 

family the equivalence relation E.a: 

(1) x E A y  V# (VA E ,4 x E A ¢:> y E A). 

Thus a Borel supported a-ideal I does not fulfil the c.c.c, iff there is an equiva- 

lence relation E with IX /El  > co whose equivalence classes, except for possibly 

one, are ]gl ~ and do not belong to I. We propose the following definable version 

of the c.c.c. We say that a Borel supported a-ideal I fulfils the ]g~ c.c.c,  if there 

is no ]g~l equivalence relation E with I x /E  I > co whose all, but possibly countably 

many, equivalence classes are not in I. (We get an equivalent version of this def- 

inition if we assume that  none of the equivalence classes of E is in I .)  The main 

result of the first part of the present paper is that the Y:] c.c.c, is equivalent with 

the approximation property (assuming some determinacy and definability of the 

a-ideal). This gives an answer to a question of Mauldin [M1]. We also define 

the pseudo-Borel c.c.c, and prove a version of the above result (the pseudo-Borel 

c.c.c, replacing the ]g] c.c.c.) without assuming any determinacy hypotheses. As 

a lemma we prove (see Lemma 4) the following result which seems interesting in 

its own right: Assume A=l-determinacy. If E is a ]g~ equivalence relation, then 

E has countably many equivalence classes iff every E-invariant ]gl set is Borel. 

(After this paper was written, G. Hjorth showed that ~ - d e t e r m i n a c y  can be 
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replaced in the above statement by the assumption that  x # exists for all x E w ~, 

which is equivalent, by results of Harrington and Martin, to ]E~-determinacy.) 

In the second part we examine which ~o supported a-ideals fulfil the Z1 

c.c.c. It turns out that the ~ c.c.c, is equivalent in this case with the c.c.c. 

Actually we show that ~o supported a-ideals fulfilling the c.c.c, are of the form 

I = ( A  : VF  E . ~ A N F  is meager in F} for some countable well-ordered by reverse 

inclusion family • of closed sets. On the other hand, if the c.c.c, is violated 

by a]E ° supported a-ideal I, then there exists a homeomorphic embedding ¢: 

2 ~ × ~  ~ X such that ¢[((~} x w  ~] ~ I for any(~ E 2 ~. This sharpens and 

generalizes some earlier results of Mauldin [M] and Balcerzak, Baumgartner and 

Hejduk [BBH]. We use this fact to show that if I is a ~o supported a-ideal of 

subsets of a Polish group which is translation invariant and fulfils the c.c.c., then 

it is the a-ideal of meager sets. This gives a partial answer to a question of Kunen 

[KU]. 

2. Approximating E~ sets and the ~1 c.c.c. 

It is a well-known fact that  if a Borel supported a-ideal fulfills the c.c.c., then it 

has the approximation property (see Lemma 5 below). That the reverse implica- 

tion also holds in certain particular cases was proved in [KLW]. A combination 

of Theorem 7(ii), Proposition 6(ii) of Section 3 in [KLW] yields the following 

result: Let I be a Borel supported a-ideal such that I M ~1  is I I  1 in the codes 

of Borel sets and such that  for any A E A~ \ I there exists a closed set C ~ I 

with C C A. Then I has the approximation property iff I fulfills the c.c.c. 

Also Mauldin [M1] proved, using results from [M], that the a-ideal of subsets of 

[0, 1] which can be covered by a]E ° set of Lebesgue measure zero (the a-ideal very 

strongly violates the c.c.c, as was shown in [M]) does not have the approxima- 

tion property. Here, using quite different methods and assuming an appropriate 

amount of determinacy, we are able to prove that  the approximation property is 

actually equivalent to the E~ c.c.c., for all reasonably definable Borel supported 

a-ideals regardless of their other structural properties. This gives an answer to a 

question of Mauldin [M1], who asked what properties of a a-ideal are responsible 

for it having the approximation property. 

If E is an equivalence relation on X and A C X is E-invariant, we write 

tA /EI  for the cardinality of the family of equivalence classes included in A. If 

B C X, then [B]E denotes the saturation of B with respect to E, i.e., [BIB ---- 
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{x E X : 3y E B x E y } .  We write [X]E for [{X}]E. If there is no possibility 

of confusion we will drop the subscript E. If a and T are two sequences of 

elements of a set Y then a * v denotes their concatenation. If y E Y, then 

a * y = a * (0, y). For a definition of II~-rank see [K1, 34B]. Now we define the 

set W O  C 2 ~. Let ( , ) : ~2 __. w be a bijection. Put  a E WO iff the relation 

{(n, m) • w2: (~((n, m)) = 1} well orders a;. WO is II~. Define [a[ = the order 

type of {(n ,m) • w2: a((n ,m))  = 1} for a • WO. Then a ~ la[ is a II~-rank 

on WO. For a pointclass F, Det(F) means that all games in F are determined. 

By a(II~)  we denote the a-algebra generated by the family of all II~ sets. 

THEOREM 1: Assume Det(A~). Let I be a Borel supported a-ideal such that the 

family I ~ A~ is a(II~) in the codes of Bore1 sets. Then I has the approximation 

property iff I fulfils the Z~ c.c.c. 

The proof of the theorem is split up into several lemmas. The implication =v 

follows from Lemmas 3 and 4 and the implication ¢= follows from Lemmas 5 and 

6. Note that  the assumption that I M A~ is a(rI~) in the codes is used only in 

the proof of ¢=. 

The following consequence of Theorem 4 from [KW] will be useful. 

LEMMA 1: (Kechris-Woodin)Det(A~)implies  Det(a(II~)).  

We will be also using the following particular case of a theorem due to Solovay. 

For a proof see [K, Theorem 7.1]. 

LEMMA 2: (Solovay) Assume Det(A~). Let A be a II~ set and p a II~-rank on 

A. Let B C A be ~(II~) and such that if  p(x) = p(y) and x • B , y  • A then 

y • B. Then B • II~. 

LEMMA 3: Let E be a 2]~ equivalence relation whose ali but countably many 

classes are not in I. Let A be an E-invariant set. If  A ~ ~ ,  then there is no 

B • ~ such that A A B  • I. 

Proof: Assume otherwise. Since I is Borel supported, we can suppose that there 

are Borel sets C and D such that C M A = 0, D C A and X \ ( C  U D) • I. Now, 

[C] and [D] are ~ and also [C] n A = 0 and [D] C A, as A is E-invariant. 

Let {O,~: n • w} be the family of all equivalence classes of E which are in 

I.  Each O,~ is Z~. If [C] U [D] U U,~e~ O,~ = X, then, since A is E-invariant, 

A = [D] U Uo,~cA On and X \ A = [C] U Uo,~NA=O On" Now, the Suslin theorem 

implies that  A is Borel which contradicts the assumptions. Thus there exists 
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x E X \ ( [ C ] U [ D ] u U n e ~ O n ) .  Then [x] ~ I and [x] C X \ ( C U D )  E I, a 

contradiction. I 

LEMMA 4: Assume Det(A~). Let E be a ~ equivalence relation. I f  E has 

uncountably many equivalence classes, then there exists an E-invariant set A E 

~,{ \ A{ .  (Thus E has countably many equivalence classes iff every E-invariant 

~..{ set is Borel.) 

Proof: Assume that  such an A does not exist. Then [A] E A{ for any A E ~{.  

We claim that either there exists a Borel uncountable set C C X such that  

x E y  iff x = y for x ,y  E C, or there exists an E-invariant set B E A{ such 

that IB/E[ > w and if B'  C B is A~ and E-invariant then IB'/E[ <_ w or 

[(B \ B ' ) / E  I <_ w. (The proof below is related to arguments of Becker [B], Sami 

and Stern on minimal counterexamples to the Vaught conjecture.) To prove 

this assume that  for any E-invariant B E A{ there exist E-invariant A{ sets 

B1, B2 C B such that B 1 0  B2 = 0 and IB1/E] > w, ]B2/E I > w. We construct 

a countable Boolean algebra `4 of Borel sets such that: 

(i) A contains a countable topological basis of X; 

(ii) if B E .4 and [[BILE[ > w then there exist B1, B2 E `4 such that  B1, B2 C B, 

[B1] M [B2] = 0, and [[B1]/E[ > w, [[B2]/EI > w; 

(iii) the topology generated by A is Polish. 

A is built recursively starting from a countable topological basis of X. We easily 

take care of (ii) using the assumption on E. To get (iii), we apply two well-known 

facts: a topology on a standard Borel space can be extended by Borel sets to 

obtain a Polish topology (see [K1, Theorem 13.1]), and an increasing union of 

Polish topologies is Polish (see [K1, Lemma 13.3]). 

Now we fix a complete metric d on X which is compatible with the topology 

generated by .4, and do a Cantor-type construction producing open (in this 

topology) sets Q~, a E 2 <~, so that: 

(a) Q0 = X; 

(b) d-diam(Qa) _< 1/(lha + 1); 

(c) I[Q~]/EI > w; 

(d) d-closure(Qo, 0 c Qo for i E 2 and a E 2<~; 

(e) if a, v E 2 <~ are incompatible, then [Q~] n [Q~] = 0. 

When Q~, for some a E 2 <~, has been constructed, we find by (ii) open (in the 

topology generated by .4) sets Uo, U1 C Q~ such that ][Ud/E I > w, i = 1, 2, and 
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IV0] ["1 [U1] --" ~ .  NOW for i ---- 1, 2 find V~, n • w, such that V~ is open in the 

topology generated by .A, d-closure(V~) C Qo, d-diam(V~) < 1/(lha + 2) and 

U~e~ v~ = ui. Then [IVY, l IE  I > w for some nl • w. Put  Q~.i = V~, for i = 1, 2. 

Now C = N~e~ Uth~=,~ Q~ is an uncountable Borel (in the original topology) 

set whose distinct elements lie in distinct equivalence classes of E.  

If there exists an uncountable Borel set C as above, we can find a E~ non-Borel 

set A C C. Then [A] (1 C = A, whence [A] ¢ A~, a contradiction. 

Thus we can assume, by passing to a Borel invariant subset of X,  that  IX~El > 

w and for each E~ set A C X,  [[A]/E[ <_ w or [(X \[A])/E] <_ w. Using Det(YI~), 

by Burgess' theorem [Bu], there exists a ~ function f : X --* W O  such that  

x E y  ~ If(x)[ -- [f(y)[. Put  B = {x • W O :  3y • X[ f (y ) [  = Ix[}. Then B • ~ 

and fulfils the assumptions of Lemma 2 (with A = W O  and p(x) = Ixl). Thus 

B • II~. Now define 

B' = {x • B :  3z • B (Izl < Ixl ^ Vy (y • B ^ lYl < Ixl lYl < Izl))}. 

It follows that  B '  E ~ .  Put  A = f - I ( B ' ) .  Then A E E~ and is E-invariant. 

Also A as well as its complement contain uncountably many equivalence classes of 

E. Thus A E ~]~ \ II~. By Det(A~) and Lemma 1, each ~ set is Sorel reducible 

to A. Pick D C 2 ~ with D E 2]~ "- A] .  Let ¢ : 2 ~ ~ X be Borel and such that 

x E D ¢~ ¢(x) E A. Since A is E-invariant, x • D ¢~ ¢(x) • [¢[D]] • A~. Thus 

D is ~ ,  a contradiction. I 

LEMMA 5: I[ I does not have the approximation property, then there exists a 

II~ set A with a II~-rank p such that the set T C wl defined by ~ • T iff 

{ x :  ; (x)  = ¢ I is uncountable. 

Proo~ Let P be a E~ set such that  there is no B • A~ with P A B  • I. Then 

the same is true about the YI~ set Q = X \ P.  Let ¢ be a Borel mapping from X 

to the space of all trees on w such that ¢(x) is well founded iff x • Q. For a tree 

T on w and u • w <~, put T~, = {v • w <~ : u . v  • T}. I f T  is well founded, let IT[ 

denote the rank o fT .  Suppose Vu • w<~3~ < wlV( > ~{x : ¢(x)~ is well founded 

and I¢(x)~] = (} • I.  Then for each u • w <~ there exists a smallest ~ = ~ < wl 

as above. Put  ~ = sup{f,, : u  • w <~} + 1. Now define B = {x • X :  ¢(x) is well 

founded and [¢(x)[ _< ~} and B'  = {x • X :  3u E w<~¢(z)u is well founded and 

I~(x)~l = ~}. Then it is easy to check that  B C Q c B U B',  B, B'  • A~ and 

B ~ • I which contradicts our assumption on Q. Thus there exists fi • w <~ such 
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that  ~/~ < wl 3¢ > ~{x E X : ¢(x)~ is well founded and ]¢(x)~] = ¢} • I. Put  

A = {x E X : ¢(z)~ is well founded} and p(x) = I¢(x)~l. It is easy to verify that 

these A and p work. I 

LEMMA 6: Assume Det(A~). Let I N  A~ be a(II~) in the codes. I[ I does not 

have the approximation property, then there is a ~ equivalence relation E such 

that IX~El = Wl and ali equivalence c/asses orE, except [or perhaps one, are not 

in I. 

Proof'. T a k e A a n d p a s i n L e m m a 5 .  D e f i n e A ' =  {x E A :  {y E A : p(y) = 

p(x)} ¢ I}. Since I gl All is a(II~) in the codes, A' is a(II~).  Clearly A' fulfils 

the assumption of Lemma 2 whence A ~ E II11. Then the following equivalence 

relation is ]E~: 

xEy ~ ((x E A' v y E A') =~ (x E A' A y E A' A p(x) = p(y))). 

Also E has wl equivalence classes and all of them except for perhaps X \ A ~ are 

not in I. I 

Assuming more determinacy and using the full strength of Solovay's lemma 

(see [K, Theorem 7.1]) we obtain the same conclusion (with the same proof) as 

in Theorem 1 for wider classes of Borel supported a-ideals or even for all of them 

if we assume AD. (Note however that,  as follows from Lemmas 2 and 3, it is 

enough to have only D e t ( ~ )  to prove that the approximation property implies 

the ~ I  c.c.c, for all Borel supported a-ideals.) For example we have the following 

result. 

THEOREM 1 ': Assume PD (AD, resp.). Let I be a Bore1 supported a-ideal such 

that I N A~ is projective in the codes (I n A~ is arbitrary, resp.). Then the ~ 

c.c.c, and the approximation property are equivalent. 

We want to make here a few comments on what can be proved without any 

determinacy hypotheses. We will summarize them in Theroem 1". A family ,4 

of disjoint sets is called p seudo-Bore l  if the relation EA associated with ,4 as 

in (1) in the Introduction is E~ and there is a II11 equivalence relation F such 

that  

(2) x e U A =¢, (VyxFy ~ xEAy). 

Note that if E,4 is Borel we can take F = E.a. A Borel supported a-ideal I fulfils 

the pseudo-Bore l  c.c.c, if every pseudo-Borel family A of disjoint sets such 
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that A M I = 0 is countable. Clearly the c.c.c, implies the ~ ]  c.c.c., which in 

turn implies the pseudo-Borel c.c.c. 

LEMMA 7: Assume a Borel supported a-ideal has the approximation property. 

Then I fulfils the pseudo-Borel c.e.c. 

Proo£" Suppose I does not fulfil the pseudo-Borel c.c.c. Let .4 be a pseudo- 

Borel family of sets witnessing it and let F be a II]  equivalence relation from the 

definition of pseudo-Borelness. By Lemma 3 applied to E A it is enough to find 

an E4-invariant set A such that A C ]E~ \ A~. Since E.a E ~ ,  Z \ U .4 E ~ .  

If x \ U  .4 ~ A] we are done. Thus we can assume that U.4 E A~. But 

by (2) U A is F-invariant and FLU`4 = EAIU.4. Thus since F E II~ and 

I U A / F [  = [AI > w, by Silver's theorem [S], there is a perfect compact set 

C C U A such that  different elements of C belong to different equivalence classes 

of E,4. Pick A C C in ~ ]  \ A~. Then [A]E~ is E4-invariant and ~2~ and, as 

[A]E~ M C = A, [A]E,~ ~ A~. | 

LEMMA 8: Assume I is a Bore1 supported a-ideal such that I ~ A~ is ~ in the 

codes of Bore1 sets. If  I [ulfils the pseudo-Bore1 c.c.c., then I has the approxima- 

tion property. 

Proo£" It is enough to prove an analogue of Lemma 6 without the determinacy 

hypothesis. But since we assume that  I N A~ is ]E~ in the codes, the set A ~ 

defined in the proof of Lemma 6 is II~. Put  `4 = {{x E A' : p(x) = a} : a < wl}. 

Then E.4 is equal to the relation E defined in the proof of Lemma 6 and thus 

[X/E•[ > ~v and E~ E ]E~. For the II~ equivalence relation F we take 

xFy ~ (x = y V (x e A' A y E A' A p(x) = p(y))). 

Combining Lemmas 7 and 8 we obtain the following theorem. 

THEOREMr': Let I be a Bore1 supported a-ideal such that I M A~ is ~.~ in 

the codes of Bore1 sets. Then I has the approximation property iff I fulfils the 

pseudo-Bore1 c.c.c. 
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3. Eo s u p p o r t e d  a - i d e a l s  

The Eo supported a-ideals occur frequently in harmonic analysis and descriptive 

set theory as a-ideals generated by families of closed sets. In this section we 

characterize those Eo supported a-ideals which have the approximation property 

and also give an abstract  characterization of the a-ideal of meager sets. No 

determinacy assumptions will be used in the sequel. 

Let J" be a family of subsets of a Polish space X. Put  

M G R ( F )  = {B  C X : VA • .PB  M A is meager in A). 

If A c X, we will write M G R ( A )  for M G R ( { A } ) .  If I is a a-ideal and A C 

X,  we write I IA = {B c A : B E I}.  A f ami ly . ~  of subsets of X is said 

to be w e l l - o r d e r e d  b y  r e v e r s e  inc lus ion  if there is an ordinal a such that  

5 r = {A~ : ~ < a} and ~ _< ~ < c~ ~ A~ D A¢. By ~rx and ~ry we denote the 

projections from X × Y onto X and Y, respectively. Also for A c X × Y we 

write Ax = {y E Y :  (x,y)  E A}. 

LEMMA 9: Let Y be Polish and let J be a E ° supported a-ideal. Assume that 

for any open set U ~ O there exists a nowhere dense set F C U such that 

F ~ J. Then there is a homeomorphic embedding ¢ : 2 ~ × w ~ -~ Y such that 

× J any  E 2 

Proo~ For any family A of subsets of Y define .4 d to be the set of all points 

x E Y such that  for any open U with x E U the set {A E .A : A N U  ¢ 0} 

is infinite. In the natural  way we identify a sequence a E (2 × w) '~ with the 

sequence ((a)0, (a) l )  E 2 n × w n. For a E w ~ by a ln  we denote the restriction 

of a to n = { 0 , . . . , n  - 1}. We also write N~ = {~ E 2 9 x w ~ : 7r2~(~')[n = 

(a)0, Tr~(~')in = (a) l}  for a E (2 x w)~,n E w. 

Now we construct recursively open sets Uo, a E (2 x w) <~, so that: 

(i) a C r, a ¢ T implies closure(U~) C Uo; 

(ii) if n e i t h e r a C T n o r T C a t h e n U o N U ~ = 0 ;  

(iii) diam(Uo) < 1/2 '~+(°)~(n-1), where n = lha; 

(iv) : • ¢ J for • 2; 

(v) ¢. 

If  Uo has been defined, find a nowhere dense closed set F C U~ with F ~ J .  

Then find two closed sets Fo, F1 C F, Fo, F1 ~ J such that  there exist two open 

sets Vo, V1 C Uo containing Fo and F1, respectively, and having disjoint closures. 
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Since Fi is nowhere dense in Vi, i = 0, 1, we can find nonempty pairwise disjoint 

open sets W~, n E w, so that Fi = {W~ : n • w} d, W~ C V~ and diam(W~) < 

1/2 k+t+n, where k = lha. To define W,~, first choose D i = {d~ : u • w} to 

be discrete subsets of Vi such that Fi = closure(D i) \ D ~. Then let W~ be an 

appropriately small ball around d~. Put  Ua.(i,n) = W~. 

Now define ¢ : 2 9 x w ~ ~ Y by ¢(a,/3) = the only point in nne~  U(~ln,/31~). 

It is clear from (i)-(iii) and (v) that ¢ is a homeomorphic embedding. Note also 

that,  by (iii) and (iv), {¢[No.(i,~)] : n • w} d = {U~.(i,.) : n • w} a ~ J for any 

a • (2 x w) <~ and i • 2. 

Suppose that there is a • 2 9 such that ¢[{a} x w ~] • J .  Then there exist 

Fn • J n YI °, n • ~v, such that ¢[{a} x w ~] C Une~ Fn. By the Baire Category 

Theorem there is T • W k, for some k • w, and no • w such that ¢[N(~lk,~)] C F,~ o . 

But then {¢[N~l(k+l),~.(n)] : n • w} d C F,~ o • J ,  a contradiction. [ 

The following theorem generalizes and strengthens some results proved in [M] 

and [BBH]. It was shown in [BBH, Theorem 2.3] that  (ii) holds for the a-ideal 

of all subsets of 2 ~ which can be covered by Eo sets of Lebesgue measure zero. 

A bit weaker result for the same a-ideal was proved earlier in [M, Theorem 1] 

and this weaker result was generalized in [BBH, Theorem 1.5] to a slightly wider 

class of ~o  supported a-ideals. 

THEOREM 2: Let I be a Eo supported a-ideaL Then precisely one of  the follow- 

ing possibilities holds: 

(i) I = MGR(Y=) for a countable family 3= of  closed subsets of  X ,  which can be 

assumed to be well-ordered by reverse inclusion; 

(ii) there is a homeomorphic embedding ¢ : 2°" x w ~ --, X such that ¢[{a} x w ~] 

I for any a • 2 ~. 

Proof'. For F C X closed put  F'  = F \ U { U  : U is open, U N F  ~ 0 and 

I[(V n F)  = M G R ( U  n r ) }  and F* = F \  U{U : V is open and U n F E I}. 

Now define by transfinite recursion: 

Fo = X*; 

F~ = (n~<x F~)* if A is limit; 

fT+l  = F~. 

Claim: Let U C X be open. Assume F7+1 N U -- F 7 M U. Then F~ (1U = F 7 A U 

for any ~ > 7. 
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Proof of the Claim: First we prove that if W n F~ E I for an open set W, 

then W n F~ = 0. This is clear if "y is limit or 0. Assume ~/is a successor. Let 

be the biggest limit ordinal < ~/or )~ = 0. Then W n F~ must be meager in 

F~. So there exists a biggest 0 < 7 with W n F.~ meager in Fa. It follows that  

there exists an open set V such that  0 ¢ V n Fe+l C W n F~. We thus have 

V n Fe+l E MGR(Fe) and V n Fe+l C I,  whence V n Fe+l = 0, a contradiction. 

Now, if U n F~ C F~+I, we show by induction on ~ > ~/ that  U n F. r c F~. 

For ~ limit it is a consequence of the observation from the previous paragraph. 

For successors it follows directly from the inductive hypothesis and the inclusion 

U n F. r c F~+I. This finishes the proof of the Claim. 

There exists a smallest a < wl such that  F~ = F~+I. 

CASEI: F~=0. 

Put  ~" = {F~ : ~/ < (~). First notice that F~+I is nowhere dense in F~ for 

7 < ~. Otherwise there is an open set U such that F~+I D F~ n U ¢ 0. Then 

by the Claim F~ D F~ N U for all ~ > 7. In particular, F~ D F~ n U ¢ 0 which 

contradicts our assumption on F~. 

Now we show that  I = MGR(~). Let A E I. Then A n ( F ~ \ F ~ + I )  E 

MGR(F~\F~+I) for 7 < a. But since F~+I • MGR(F~), we have A • 

MGR(F~). For the opposite direction assume that A n F~ • MGR(F~). Since 

F~+I is closed, A n (F~ \ F~+~) • MGR(F~ \ F~+~). Thus A n (F~ \ F~+I) • I 

for ~/< (~. Also clearly X \ F0 • I and N.~<x F~ \ F~ • I for ~ limit. Since I is 

a a-ideal, 

A=An(X\go)u U 
)~c~,)~ l imi t  ~/~)~ 7~c~ 

CASE 2: F , ~ 0 .  

By the Claim F~ = F~ for all ~ > a. Thus F~ = F~ and F* = F~. This easily 

implies that  the assumptions of Lemma 9 are fulfilled for Y = F~ and J = IIF~. 

Thus we obtain (ii). | 

Note that (i) implies that  I fulfils the c.c.c. Thus it follows from Theorem 

2 that  if a ~o  supported a-ideal does not fulfil the c.c.c., then there exists a 

"perfect" family of G~'s outside of I,  i.e., (ii) holds. A similar fact was proved 

for a different class of a-ideals in [KLW]. Namely by Theorem 2 of Section 3 in 
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[KLW], if I is a Borel supported a-ideal such that I MAll is YI11 in the codes 

and for any A • ~ \ I there is a closed set C ~ I with C C A, then if I does 

not fulfil the c.c.c., then there is a "perfect" family of closed sets not in I. In 

particular, in this case, as well as in the case of E]~ supported a-ideals, the c.c.c., 

the ]E~ c.c.c., and the pseudo-Borel c.c.c, are equivalent. 

The next theorem lists a few characterizations of the a-ideals of the form 

MGR(Y:) for a countable, well-ordered by reverse inclusion family ~- of closed 

sets. 

THEOREM 3: Let I be a ~o supported a-ideal. Then the following are equivalent. 

(i) I is of the form MGR(IT) for a countable family iT of dosed subsets of X 

well-ordered by reverse inclusion; 

(ii) I fulfils the c.c.c.; 

(iii) I [ul~ls the pseudo-Bore1 c.c.c.; 

(iv) I M A11 is A~ in the codes of Borel sets; 

(v) I M A~ is ~ in the codes of Bore1 sets; 

(vi) I has tile approximation property. 

Proof: (i) =~ (ii). Let A be an uncountable family of disjoint ~ sets with 

,4 n I = 0. Then, since iT is countable, there is F • iT and an uncountable 

family ,4' C ,4 such that A N F is not meager in F for any A • ,4'. This yields a 

contradiction, since MGR(F) fulfils the c.c.c. 

(ii) =~ (iii) is obvious. 

(iii) =~ (i). Suppose (i) does not hold. Let ¢ be as in Theorem 2(ii). Put  

`4 = {¢[{a} × w ~] : a • 2~}. Then E,4 is Borel. Indeed, notice that since ¢ is a 

homeomorphic embedding ¢[2 ~ x w ~] is I I  °. Put  S = ¢[2 ~ × w~]. Then 

Since EA is Borel, A is a pseudo-Borel family. 

(i) =~ (iv). By a standard calculation, see e.g. [K, 16.1]. 

(iv) ~ (v) is obvious. 

(v) =~ (i). Suppose that I is not of the required form. Let ¢ be as in Theorem 

2(ii). Let B C w ~ x 2 ~ be such that B e A~ and r ~ [ B ]  ¢ II~. Define 

B'  C w '~ x X by (a,x) e B' ~=~ x E 0[2 ~ × w ~] A (a,  Tr2~(O-l(x))) e B. Clearly 

B' E A1. It is easy to check that B~ ~ I or B~ = 0 for any a E w ~ and 
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{a E w~: B~ • I} = {a E w~:  B~ ~ 0} = 7r~[B] ~ II~. Thus {a E 2~:  B"  E 

I} ¢ E~ which gives a contradiction since if I M A~ is 2] 1 in the codes, then 

{ a E 2  ~ : A ~ E I } i s E 1  l f o r a n y B o r e l s e t A C 2  ~ x X .  

(vi) ~ (iii) is simply Lemma 7. 

((iii) A (v)) ~ (vi) is Lemma 8. I 

Consider now 2 ~ as a group with the coordinatewise addition modulo 2. Kunen 

[Ku, 1.27] asked if all Borel supported a-ideals on 2 ~ which are translation in- 

variant and fulfil the c.c.c, are: the family of meager sets, the family of Lebesgue 

measure zero sets or the intersection of the two. The following corollary provides 

a partial answer to this question. 

COROLLARY: Let  X be a Polish space and let H be a group of  homeomorphisms 

of X such that UheH h[U] = X for any open nonempty  set U C X .  Let I be a 

E ° supported a-ideal on X .  I f  I fulfils the c.c.c, and is such that h[A] E I i f  

A E I,  then I is the a-ideal of  meager sets. In particular, i f  G is a Polish group 

and I is a ~.o supported translation invariant a-ideal on G which fulfils the c.c.c., 

then I is the a-ideal o f  meager sets. 

Proof." First notice that,  by invariance under homeomorphisms from H,  I cannot 

contain a nonempty open set. By Theorem 3 there is a well-ordered by reverse 

inclusion countable family ~- of closed subsets of X such that  I = MGR(2=). 

Let Fo E j r  be such that  F'  C Fo for any F '  E ~'. Then X \ F0 is open and 

X \ Fo E I. Thus X \ F o  = 0, i.e., Fo = X. If ~ ~ {Fo}, let F1 E ~ be such 

that  F '  C F1 for any F '  E ~ r \{Fo} .  If ~r = {Fo}, put F1 = 0. It follows that  

M G R ( X  ". F1) C I.  Since X \ F1 is nonempty and open, we get M G R ( X )  c I 

by invariance of M G R ( X )  and I under homeomorphisms from H. If there is 

a set A E I \ M G R ( X ) ,  then, since I is E ° supported, we can find A E E °, 

A E I \ M G R ( X ) .  Now the Baire Category Theorem implies that  there is an 

open set in I which is impossible. I 
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